Extended Abstract

Motivation Drug discovery, like many exploratory problems of science, can be framed as a
combinatorial search problem: of all combinations of small molecule ligands, which bind most
strongly to a given protein structure? Recent models can estimate docking (i.e. DiffDock, AlphaFold)
of a provided protein-ligand complex, but the search of a better ligand remains computationally
expensive or physically implausible Buttenschoen et al.|(2024). We investigate the nascent possibility
of training LLMs as optimizers over chemical space, using design intuition from its pretrained world
model to propose surgical edits to ligand sequence (Chakraborty et al.| (2025).

Method We extend the method of |[Hla (2025) to predict the dissociation constant k,; of a reversible
reaction, our proxy for binding affinity, through a protein-ligand docking simulation. Our verifier is
a new model-based reward environment, which runs the simulators DiffDock—a diffusion model
to dock ligand poses by DDPN sampling—then Gnina—a CNN to score affinity of provided poses.
Since neither DiffDock nor Gnina are deterministic, the affinity estimates initially had very high
variance o2, i.e., a low signal-to-noise ratio, which would prohibit training from converging. To
address this, we aggressively cache affinity outputs and take a rolling mean, such that 0 — 0 by the
Law of Large Numbers. Due to lack of access to a wet-lab, we take the liberty of assuming that our
verifier is the ground truth.

We implement training in two steps: imitation learning for distillation and reinforcement learning
via GRPO. Our data comes from the refined dataset from the PDBBind+ database, which contains
5316 protein-ligand pairs with experimentally measured affinities Wang et al.|(2004). We collect a
new dataset of reasoning traces from Gemini 2.5 Pro Thinking with multi-turn tool use (of our
verifier), which is distilled into the Qwen3-8B base by SFT. Then we endeavor to run GRPO, and we
define a pass/fail reward where it passes if the edited ligand I’ has strictly higher k4 than the original
{, and their 95% ClIs do not intersect.

Implementation Most effort was spent on constructing a distillation dataset, and on building a
high-throughput, error-free model-based verifier from scratch as aforementioned. Our imitation
dataset is a transfer task of corrupted and original ligands (i.e., replace a functional group, delete
a carbon in the ring), where the frontier LLM is tasked to reason through healing the corrupted to
an original ligand, and we rejection sample to keep passing reward. In its prompt, we supply the
original and corrupted ligand SMILES, their binding affinities, the amino acid (AA) sequence, and the
protein’s binding pocket (using our custom serializer). A corruption uses model-free tools in RDKit
to corrupt the behavior of a ligand from PDBBind++, with rejection sampling over the verifier to
provably lower binding affinity.

With our distillation dataset of un-corruption tasks, we run imitation learning on the base LLM policy
Qwen3-8B-Base using Unsloth (a CUDA-optimized fork of tr1l), LoRA and 4-bit quantization on a
1xA100. Through chains of thought interleaved with MCP tool calls to the verifier, the policy learns
to verifiably improve a ligand’s design. We evaluate the imitated policy on our small novel benchmark
of held-out PDBBind++ test samples, with test metrics defined as the exact SMILES match rate, the
chemical validity rate of generated SMILES, and the average Tanimoto similarity between predicted
and target structures.

Results We optimized the verifier’s batch throughput to shrink variance 0.01% of k4 values, with
batch sizes bz = 10 in ~ 20s in parallel. By reducing the stochasticity of the reward environment,
we can guarantee that the that the binding affinity is well-defined and well-ordered, which is crucial
for a rule-based reward defined by delta improvement.

We stabilized the verifier to to output binding affinities with confidence intervals with 100 % success
rate during testing with 500 sample pairs, achieving a speed of approximately 5 seconds per input.
Running SFT on a small dataset resulted in inconclusive behavior, with the model behaving as
intended but often failing to generate valid SMILES strings.

Discussion From the outset, this project underestimated the difficulty of setting up a RL environment
from scratch. Because the verifier needs to be functional during both SFT and RL steps, ensuring
its stability was top priority throughout the project, leading to repeated delays. Nonetheless, our



finished verifier vastly exceeds the speed of any individual state-of-the-art affinity prediction models,
leveraging structure information and confidences produced by DiffDock to guide affinity prediction
in GNINA, showing the promise of our RL environment.

Conclusion Because the project was plagued by too many implementation issues to be completed
on time, we cannot make conclusive statements on the effectiveness of our method. More work is
required to adapt the overall framework into a workable product, as well as further optimize the
model in collaboration with members of the drug discovery community. Future work in the field of
drug discovery should rely more on existing work as scaffolding, and be more self-contained in scope.
Nonetheless, successes in verifier and preliminary SFT seem to suggest the potential of our method.



Alpha-Hypothesis: Ligand Design with Reasoning

LLMs

Ruosong Gao
Department of Computer Science
Stanford University
ga020020stanford.edu

Markus Zhang
Department of Computer Science
Stanford University
markusz@stanford.edu

Abstract

Sonnet Xu
Department of Computer Science
Stanford University
sonnet@stanford.edu

Caleb Choe
Department of Computer Science
Stanford University
choe27@stanford.edu

Can LLMs propose chemically meaningful edits to ligands in existing protein-
ligand complexes? Inspired by recent advancements in LLM methods in drug
discovery, we train a 8B base model to optimize ligand binding affinity to known
proteins, using a teacher LLM to generate reasoning traces on a specially designed
dataset for distillation learning. This fine-tuned model is then passed into group
relative policy optimization (GRPO), where a custom-built verifier pipeline serves
as reinforcement learning’s reward function. Due to implementation issues, we
were only able to complete the first part of the project and leverage supervised
finetuning (SFT) to distill the teacher model’s reasoning traces into the student

model.

1 Introduction

Drug discovery represents a fundamentally difficult problem for
Al models to solve, due to the intractable size of chemical spaces
involved and the sparsity of experimentally-validated data. A key
task in drug discovery is the design of ligands to bind to specified
proteins, wherein while the mathematics governing the underlying
chemistry of binding is relatively well-understood, deep learning
models struggle to capture relevant information given reasonable
storage and speed requirements. Over the past few years, a variety
of methods have been proposed to solve the ligand optimization
problem. Models such as RosettaFold jointly process the sequence,
structure and interaction information between the ligand and the
receptor, while another approach, exemplified by GNINA, applies
variations of Monte Carlo sampling on classical docking simulators.
McNutt et al.|(2021) Baek et al.| (2021)) Advancements in diffusion-
based generative models offer yet another possibility, with models
such as DiffDock being able to generate high-quality binding poses
at a fraction of the cost of classical methods. |Corso et al.|(2023)

Docked: 4.35 pKd (Cl: 4.348 - 4.359)

o

N\

HH Yo

(7'%\ o
N

COOH

CC(=0)Nedcce (N2C(=0) [COBHI3LCOH]4CCLCO)
(NC(=0)0CC(=0)0) (CC4) [CORHI3C2=0) col

Okay, | have the initial docking results for the provided ligand and protein.
353. My goal is to find a ligand with a k_d at

ing a k_d of approximately 3.349 or less.

ions. | hypothesize

ould alter the binding
bonding, but their

Figure 1: A reasoning trace ex-
ample from Gemini using our
verifier tool and our React app

However, existing methods often fail to output physically plausible
results, and because the intermediate steps of the generative process
are inaccessible to researchers, it is difficult to identify the problem

Stanford CS224R 2025 Final Report



and take corrective action. [Buttenschoen et al.| (2024) Likewise,

models lacking explicit access to principles of chemistry and existing

literature makes for poor integration with human researchers. These concerns have inspired the
growing popularity of LLM methods in drug discovery. Transformers pretrained on biomedical
corpus- often enhanced by GNNs and RL training- have demonstrated initial promise in de novo
drug design, drug repurposing, and auxiliary medical use, as well as the ability to simultaneously
process multiple layers of chemical information. |Chakraborty et al.| (2025) ESM-3, for example,
is an LLM trained on protein data to capture the structural, sequential and functional properties
of protein-ligand pairs in separate tracks and has demonstrated the ability of language models to
discover novel molecules with desired properties. |Hayes et al.|(2024) All of these methods, however,
require significant modifications to existing LLM architecture.

Inspired by these developments, we ask whether a relatively lightweight LL.M, without significant
modifications, can be trained to reason through chemically meaningful edits to generate candidate
binders. Over a sequence of tool calls, we want an LLM to make many hypotheses and test them
with our custom-built verifier. Hence we aim to perform output distillation from frontier models and
Reinforcement Learning with Verifiable Rewards to optimize binding affinity.

2 Related Work

PPO Proximal Policy Optimization |Schulman et al.| (2017) belongs to a family of trust-region
policy gradient methods. In a vanilla Policy Gradient,
Ipc(9) = Eqnp(Q),0nme (0Ola) [Aro,,, (4:0)]

where ¢, o are the question and output, and A, ' (g, 0) is the advantage function typically estimated

as Q™% (q,0) — V74 (q). PPO adds a clipped surrogate objective to prevent destructively large
policy updates:

Ippo(0) = Eqp(Q),onm,,, (Ola) {min (Te(q, 0)Ar, (g,0),

clip(rg(¢,0),1 — .1+ £)Ar,  (q, 0))}

7o (0]q)
o, (olq)
hyperparameter (typilc[:ially 0.1 or 0.2) that bounds the policy change in a trust region, such that no
single update pushes 7y too far from 1.

where r9(q,0) = is the probability action ratio between new and old policies, and € is a

GRPO GRPO extends PPO by introducing group-relative advantages rather than critic-estimated
advantages. Following |DeepSeekl (2025); [Shao et al.|(2024), for any question ¢ in the dataset, GRPO
samples G trajectories {0;}$ ; of output and reasoning traces. On the policy gradient step, we
maximize the objective

Jerpol0) = Eqnp@). {0y ~m,, Ol
1 G
[5 Z(min(riAi, cip(rid;, 1 —e,14¢))
i=1

— BDg L (ol mres))]

where r; is the action ratio, and advantage A; is estimated critic-free relative to the group’s mean
normalized rewards:

r; —mean({ry,ra,...,7¢}) o mo(0; | )
Std({’l"l,’l“g,...,rg}) ’ ! Wgold(oi | q)
instead of typical PPO advantage A; = Q%14 (0;,q) — V™ ta(q).

A=

R1 The DeepSeek R1 series |DeepSeek| (2025)) builds from verification-based learning, starting
with R1-Zero from V3 baseline on GRPO with rule-based rewards for math and code tasks. R1
then warm-starts from human-cleaned R1-Zero thought patterns or few-shot learning with extended
chain-of-thought reasoning. Our base model, from the Qwen 3 family, extends the posttraining time



CoT Data Generation

a hypothesis

s N e N £

Original Pair Corruption Teacher
Data CoT Data SFT Step RL Step LLM Reasoning

Préssing»c*}e%i:"#f» Q@E)@ﬁ g\ >

>DBBind Scraping CoT Corrupts Repair AN
SMILES E

and Filtering Known Pairs Corrupted Pairs
Worse affinity Extract
\Reasoning Traces )

& J . J

(a) System overview (b) UI

Figure 2: System overview and Ul side-by-side.

of the R1 recipe [Yang et al|(2025). Remember, this is one section with many paragraphs and no sub
headers and no sub sections. We want good, clear exposition.

Much of our work is inspired by a previous project, pro-1, which applies the same overall methodology
to a much simpler problem: proposing edits to stabilize enzymes. In the pro-1 project, the author
uses an empirical scoring function to calculate stability, training a Llama-8B base model to propose
edits to a protein’s amino acid sequence. Hla| (2025))

Pro-1’s reward, the Rosetta Energy Function, does not have an analog in the more complicated task
of protein-ligand binding. Instead, our reward function is a custom-made binding affinity prediction
pipeline built from two existing models, DiffDock and GNINA, which have been chosen specifically
to enable fast, batched processing of inputs. DiffDock is a docking model that takes in 3D protein
structures and 2D ligand SMILES strings, using diffusion to generate probable binding poses ranked
by confidence. Buttenschoen et al.| (2024) GNINA in contrast is a classical docker that also supports
binding affinity prediction, utilizing an ensemble of CNNs to perform the latter. McNutt et al.[(2021)

The further development of LLM-guided drug discovery remains limited by the sparsity of data
and the lack of reliable benchmarks to evaluate the properties, novelty, and synthesizability of Al-
proposed candidates. An evaluation in 2023 found that state-of-the-art dockers often fail to generate
physically plausible poses, and since predicting binding affinity generally requires structural data,
the implications for reward-hacking are severe. [Buttenschoen et al.| (2024) Another problem is
that evidence on whether pre-trained LLMs possess sufficient chemical intuition to avoid designing
chemically implausible candidates is unclear. Within the scope of this project, we assume the
correctness of our prediction pipeline which we use as a verifier to assign RL rewards, as well as the
wisdom of our base model.

3 Methods

Our approach focuses on fine-tuning a large language model (LLM) to generate optimized SMILES
structures based on chemically-motivated reasoning, which is achieved through SFT and GRPO.

During SFT, a key innovation is the introduction of a custom loss function that prioritizes the accurate
generation of SMILES strings, ensuring that the model does not hallucinate and mitigating reward
hacking.

GRPO is guided by a reward function based on the above-described DiffDock-GNINA pipeline. The
poses outputted by DiffDock are batched and sent into GNINA. Due to the inherent randomness of the
pipeline, for each pair that requires prediction, we make 20 calls which undergo parallel processing to
reduce the variance, aggregating the results via Bayesian Vector Autoregression (BVAR). A reward is
assigned if the proposed modification improves upon the baseline in a statistically significant way, i.e.
if the lower bound of the new binding affinity’s 95% confidence interval is greater than the original
ligand.



3.1 Data Generation

The data generation pipeline orchestrates asynchronous interactions between our language model and
the docking simulator to maximize throughput while capturing rich reasoning traces. We begin by
loading the curated PDBBind+ dataset of 5,316 protein—ligand complexes and apply an RDKit-based
corruption routine to produce minimally perturbed ligands with intentionally reduced binding affinity.
Each original and corrupted ligand pair, together with extracted binding pocket residues and sequence
context, is passed to Google Gemini-2.5-pro via a templated system prompt that enforces JSON-only
function calls. Responses are recorded both as raw JSON objects and parsed into a structured
TraceOutput schema; a regex-based fallback parser recovers any malformed JSON replies. Docking
is carried out through a persistent DockingClient session, which internally performs multiple
simulation repetitions to return averaged binding scores for each ligand. We validate all input and
output SMILES strings with RDKit, skipping invalid entries to maintain data integrity. Finally, every
prompt message, function call metadata, docking result, reasoning segment, proposed SMILES, and
predicted K is serialized line-by-line into a JSONL file, producing 1,000 deeply annotated CoT
traces for downstream supervised fine-tuning. We hypothesize that such an easier transfer task lowers
hallucination in imitation; namely, an LLM policy can learn, and not memorize, the easier task of
“de-corruption” in SFT, which improves the baseline for the harder task of ligand improvement in RL.
Data preparation is elaborated in Appendix.

3.2 Tokenization and Custom Data Collator

Tokenization was performed using the pre-trained tokenizer associated with the chosen LLM. A
custom SMILESFocusedDataCollator was implemented to prepare batch inputs. This collator
performs two key functions:

1. Standard Tokenization: It tokenizes the input_text for attention masking and the full
sequence (input_text + target_text) to generate input IDs for the model. Truncation
and padding are applied to a maximum length of MAX_LENGTH (4096 tokens).

2. Label Creation and SMILES Indexing: Labels are generated from the full to-
kenized sequence (input_text + target_text). Tokens corresponding to the
input_text are masked with -100, ensuring that the loss is only computed over the
target_text. Importantly, the collator converts the character-level SMILES start and
end indices (from smiles_start_idx and smiles_end_idx) into token-level indices
(smiles_token_start, smiles_token_end). This is achieved by calculating the number
of tokens preceding the SMILES string within the target text. This token-level SMILES
position information is crucial for the custom loss calculation.

3.3 SMILES-Focused Loss Function

To enhance the model’s ability to accurately generate SMILES strings, we introduced a custom loss
function within the SMILESFocusedTrainer. This trainer inherits from transformers.Trainer
and overrides the compute_loss method. The loss computation proceeds as follows:

1. Forward Pass: The model’s logits are obtained from a standard forward pass.

2. Base Cross-Entropy Loss: A standard cross-entropy loss is calculated using
torch.nn.CrossEntropyLoss(ignore_index=-100, reduction=’none’). This
produces a loss value for each token in the target_text that is not masked (-100).

3. SMILES-Specific Weighting: For each example in the batch, a smiles_weights tensor is
initialized with ones. Using the smiles_token_start and smiles_token_end indices,
the weights corresponding to the SMILES tokens within the target_text are multiplied
by a smiles_loss_weight factor (set to 2.0).

4. Weighted Loss Calculation: The base_losses are then multiplied by the
smiles_weights to obtain weighted_losses.

5. Final Loss: The final loss for the batch is the mean of the weighted_losses over all valid
(non-100) tokens.



Rationale: This weighting strategy ensures that errors in predicting SMILES tokens contribute
more significantly to the total loss, thereby guiding the model to pay closer attention to the chemical
structure generation task. This is based on the assumption that accurate SMILES generation is a
critical component of the overall task, and thus warrants a higher penalty for incorrect predictions.’

3.4 Building a High-performing Verifier

A reliable verifier is essential to ensure that proposed ligand modifications genuinely improve binding
affinity, rather than exploiting noise or artifacts in the evaluation process. Our verifier is designed
to provide a robust, statistically principled reward signal for every candidate ligand generated by
the agent. Each candidate ligand, represented as a SMILES string, is first converted to an SDF file
using NVIDIA’s NIM service. The target protein is provided as an experimentally validated PDB file,
used without manual cleaning or preprocessing. For efficiency, we maintain a JSON-based filesystem
cache keyed by the hash of the protein sequence and ligand SMILES; this cache is never invalidated,
so repeated queries for the same pair return the most recent score instantly, while background jobs
update the rolling mean and variance as new samples are computed. This approach leverages the law
of large numbers to ensure that our affinity estimates become increasingly precise over time.

Pose generation and scoring are performed in two stages. First, we use NVIDIA’s hosted DiffDock
API to generate candidate binding poses, with the following key parameters:

* Diffusion steps: 20

* Batch size: 20 poses per call

* Cache strategy: cache-first fetch with asynchronous background refresh
Next, each set of poses is scored using a CNN-based model via a Dockerized gnina.sh wrapper
with 48 rotations, 8 Angstroms autobox around docked ligand pose, and 70% weight to empirical
AutoVina estimation. All jobs are orchestrated via Docker Compose, with FastAPI/NIM wrappers for
synchronous, batched calls. Monitoring and error tracking are handled by Prometheus and Grafana.

If the DiffDock API returns an HTTP 429 (rate limit), we retry up to three times with exponential
back-off.

To aggregate the raw predicted affinities (X;) and their variances (af) from multiple poses, we use a
statistically principled routine:
1. Winsorize the bottom 10% of confidence scores (¢;) at a cutoff c.y,.

2. Compute a soft down-weighting factor § such that exp(—f(ccw — maxc)) = € (with
e =0.01).

. Adjust variances: ogy = 0% - exp(—f(c; — maxc)).
. Compute inverse-variance weights: w; = 1/ afdj.

. Calculate the weighted mean: 1 = >, w; X;/ Y, w;.
. Estimate the variance of the mean: v =1/, w;.

. Construct a 95% confidence interval: p + 1.964/v.

~N N KW

We assume a fixed-effects model (no random-effects term, 72 = 0) and do not apply any CVaR
bonus.

The reward function is strictly binary: a candidate ligand receives a reward of 1 if and only if its
mean predicted affinity is higher than that of the original ligand and the 95% confidence intervals of
the two means do not overlap. This conservative criterion ensures that only statistically significant
improvements are rewarded, reducing the risk of the agent exploiting noise or uncertainty in the
scoring process.

In practice, the verifier is invoked on every candidate generated during policy optimization. Both the
mean and confidence interval are exposed to the agent for transparency, but only the binary pass/fail
signal is used for policy updates. Typical latency for five repetitions is approximately 20 seconds,
with 100% GPU utilization. Limitations of this approach include delayed positive feedback when
confidence intervals overlap, possible staleness from the never-invalidated cache, uncharacterized
variation from internal DiffDock steps (such as ESMFold or “Benix”), and the inherent trade-off
between throughput and statistical accuracy as the number of repetitions is varied.



ladk: Reward Distribution Across 4 Gens (10 samples per gen)

4.35 Gen 1

Gen 1 Mean
Gen 2
Gen 2 Mean
Gen 3
Gen 3 Mean
Gen 4
Gen 4 Mean

4.34std: 0.0135

Std: 0:0096
4.32 Std: 0.0040

t LR R LB 1

g *® x Std: 0:0032
’ ®

Reward / pKd CNNaffinity
®

Gen 1 Gen 2 Gen 3 Gen 4

Generation

Figure 3: Variance reduction over n samples for protein ID lalk

4 Experimental Setup

4.0.1 Task Description

The primary task is to develop a language model capable of analyzing protein-ligand interaction data
and proposing an optimized ligand represented by its SMILES string, while also providing a detailed
reasoning for the proposed modification. This is framed as a text-to-text generation task within a
conversational format.

4.0.2 Dataset Description

The dataset is derived from data/new_traces. jsonl, comprising pairs of input prompts and target
responses (generation approach described in methods). Each entry represents a single protein-ligand
optimization task, including the initial ligand, protein context, and the desired optimized ligand with
accompanying reasoning. The dataset was split into training and test sets at an 80/20 ratio. The
training set is used for parameter updates, while the test set is reserved for evaluating generalization
performance.

4.0.3 Model and Training Configuration

We fine-tuned the Qwen3-8B-Base-unsloth-bnb-4bit model. This model was chosen for its balance
of size and efficiency, particularly its 4-bit quantization, which allows for training on consumer-
grade GPUs. Unsloth’s integration provides optimized 4-bit training. The model fine-tuning was
performed using the unsloth/Qwen3-8B-Base-unsloth-bnb-4bit base model, employing 4-bit
quantization for efficient memory usage. The maximum sequence length was set to 4096 tokens.
Training utilized torch.bfloat16 precision where hardware supported it, otherwise defaulting to
torch.float16. Low-Rank Adaptation (LoRA) was configured with an r value of 32, lora_alpha
of 64, and a lora_dropout of 0.05. The target modules for LoRA adaptation included "q_proj",
"k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", and "down_proj", with no bias
applied ("none"). Gradient checkpointing was enabled via "unsloth" to optimize memory. For
reproducibility, a random state of 3407 was used throughout the process.

The training process was managed using the Hugging Face TrainingArguments. The model output
was saved to . /smiles_focused_model. Training was conducted for 10 epochs, with a per-device
training batch size of 2 and a per-device evaluation batch size of 4. Gradient accumulation steps were
set to 8, resulting in an effective batch size of 16. The learning rate was initialized at 3 x 10~ with a
50-step warmup. Gradient clipping was applied with a maximum gradient norm of 1.0. Logging,
evaluation, and model saving occurred every 100 steps, with both evaluation and save strategies set to
"steps". The AdamW 8-bit optimizer was used with a weight decay of 0.01, and the learning rate
schedule followed a cosine type. The best model, determined by the lowest eval_loss, was loaded
at the end of training. The seed for all random operations was set to 3407 to ensure reproducibility.

Assumptions: Our pipeline relies on several key assumptions. We assume that the persistent
DockingClient server internally performs sufficient simulation repetitions to produce reliable
averaged binding scores with minimal variance. We further assume that RDKit-based SMILES



Table 1: Performance Comparison

Method Exact Match Rate  Validity Rate ~ Similarity
Baseline (Before SFT) 0.000 0.618 0.221
After SFT 0.000 0.500 0.225

validation effectively excludes chemically invalid molecules without introducing significant selection
bias. Finally, we assume that skipping a small fraction of complex or invalid ligands (typically <5%)
does not materially affect the diversity or representativeness of the generated dataset.

4.0.4 Baselines and Metric Choices

As this is a fine-tuning task with a custom loss, a direct quantitative baseline of an untrained or naively
fine-tuned model would primarily highlight the benefit of fine-tuning itself. Our primary focus is on
the efficacy of the proposed SMILES-focused loss.

Evaluation of the model’s performance on SMILES generation was conducted using the following
metrics, chosen to provide a comprehensive understanding of both chemical correctness and structural
similarity:

* Exact Match Rate: Defined as the proportion of test examples where the extracted predicted
SMILES string is identical to the target SMILES string. This is a strict measure of perfect
chemical structure generation.

Number of exact SMILES matches

Exact Match Rate =
ract Vialch Rate Total number of evaluated samples

* Validity Rate: Defined as the proportion of test examples where the extracted
predicted SMILES string is a chemically valid molecule, as verified by RDKit’s
Chem.MolFromSmiles function. This assesses the model’s ability to generate chemically
sensible structures.

Number of valid predicted SMILES
Total number of evaluated samples

Validity Rate =

* Average Tanimoto Similarity: For predictions that yield a valid SMILES string, the
Tanimoto similarity coefficient is calculated between the predicted SMILES and the target
SMILES. This is computed using Morgan fingerprints (radius 2, 2048 bits) generated by
RDKit’s rdMolDescriptors.GetMorganFingerprintAsBitVect. The average of these
similarity scores is then reported. This metric provides a continuous measure of structural
resemblance, even when exact matches are not achieved.

_ [FP(S1) N FP(Sy)|

Tanimoto Similarity(Sy, S2) = [FP(S1) U FP(Sy)|

where S7 and S, are SMILES strings, and F P(-) denotes the Morgan fingerprint.

1

Avg Tanimoto Similarity = Al oreds
num valid preds

> Tanimoto Similarity (pred SMILES, target SMILES)

valid preds

5 Results

5.1 Quantitative Analysis

Table 1 showcases results during test-time eval, where "exact match rate" measures the portion of
proposed SMILES edits that match ground truth, found in the PDBBind+ dataset; "validity rate"
measures the portion of SMILES strings that are valid; and "similarity" measures how much the
proposed edit resembles ground truth. That the validity rate of our base model is significantly lower
than 1 calls into question the assumption that the model had adequately learned chemistry during
pre-training, whereas the drop in validity rate during SFT may be either due to overfitting on a smaller



train/loss train/grad_norm

34

50
32
30 40
28
30
26
24 20
22
20 train/global_s ’ 10 obal_step
10 15 20 25 30 35 40 10 15 20 25 30 35 40
(a) Loss (b) Gradient norm

Figure 4: Loss and gradient norm in SFT imitation

efine based on results\nStep 5: Provide final optimized molecule\n\nMANDATORY: Make 2-4 docking_simulation calls to explore different re
pair strategies, then immediately provide your final answer.\n\nFINAL ANSWER FORMAT:\nAfter your tool calls, provide ONLY this JSON bloc
k with no additional text:\n\n''“json\n{\n "ligand": "your_actual_SMILES_here",\n "kd": "predicted_value_uM"\n}\n" *\n\nCRITICAL: Repl
ace "your_actual_SMILES_here" with a real chemical structure like "CC(=0)Nclcccccl" or "C1=CC=C(C=C1)0". Do NOT leave placeholder tex
t.\n\nStart now with your first docking_simulation call.\n\nASSISTANT: > Running docking simulation...\n> SMILES: 0=C(CP(=0)(0)0)NCCNC(=
0)CP(=0) (0)0\n> Target: 2fzc\n> Active Site: ALA127:A\n> Result:\n> - Predicted Kd: 1855.3 uM\n> - Docking Score: -5.1 kcal/mol\n> - Ana
lysis: The simulation confirms the weak binding affinity of the provided ligand. The flexible ethylenediamine linker allows the molecul
e to adopt many conformations, most of which do not fit well in the active site. The two terminal phosphonate groups are far apart and d
o0 not seem to be optimally positioned to chelate the magnesium ions or interact with the key arginine residues known to be in the UPPs a
ctive site. The poor score is likely due to a combination of high conformational flexibility (entropic penalty) and a suboptimal distanc
e between the key interacting groups.\n> Running docking simulation...\n> SMILES: 0=C(CP(=0)(0)0)NCCCNC(=0)CP(=0)(0)0\n> Target: 2fzc\n
> Active Site: ALA127:A\n> Result:\n> - Predicted Kd: 970.1 pM\n> - Docking Score: -6.2 kcal/mol\n> - Analysis: Lengthening the linker f
rom two carbons (ethyl) to three carbons (propyl) has improved the binding affinity. This suggests that the original linker was too shor
t, preventing the phosphonate groups from reaching optimal interaction points simultaneously. The increased flexibility of the longer ch
ain, however, might still pose an entropic penalty. This result supports the hypothesis that the spatial arrangement of the phosphonate
s is critical.\n> Running docking simulation...\n> SMILES: 0=C(CP(=0)(0)0)N1CCN(CC1)C(=0)CP(=0)(0)0\n> Target: 2fzc\n> Active Site: ALA1l
27:A\n> Result:\n> - Predicted Kd: 45.8 pM\n> - Docking Score: -8.9 kcal/mol\n> - Analysis: Replacing the flexible ethylenediamine linke
r with a rigid piperazine ring significantly improves binding affinity. The piperazine scaffold pre-organizes the molecule into a more f
avorable conformation for binding, reducing the entropic cost. This rigid structure positions the two phosphonoacetamide arms at a fixe
d distance and angle, which appears to be highly complementary to the target\'s active site, allowing for strong, simultaneous interacti
ons with key residues and/or metal cofactors. This is a much more effective repair strategy than simply increasing linker length.\n> Run
ning docking simulation...\n> SMILES: C1=CC=C(C=C1)C(P(=0)(0)0)P(=0)(0)0\n> Target: 2fzc\n> Active Site: ALA127:A\n> Result:\n> - Predic
ted Kd: 1.2 uM\n> - Dockina Sc

Figure 5: part of a reasoning trace by our model

dataset (around 100 data points), or the long reasoning traces from Gemini 2.5 confusing the model.
A third possibility is that even with a continuous loss function that rewards similarity, the sheer size
of the chemical spaces involved makes rewards sparse, interfering with training.

Similarity has slightly increased, and we hypothesize that with a larger training dataset and longer
training time, the similarity and exact match performance post SFT can significantly exceed baseline.

5.2 Qualitative Analysis

Examining the reasoning traces generated by our model during evaluation shows that the experimental
setup worked as intended: the model is hypothesizing about optimization options, then making
tool calls to verify its hypotheses. (For an example reasoning trace, see figure 6.) The LLM is
drawing from a wide repertoire of chemical knowledge, as intended; this complicates the preliminary
conclusion from the above analysis that there are deficiencies in the base model’s chemistry knowledge.
Our results most likely suggest that the domain-specific performance of our base model is more
complicated than our initial assumption: it struggles to conform to strict chemical notation but
possesses a general understanding on chemical properties and interactions, implying that in order to
stabilize training, there should be a preliminary step aimed at enforcing SMILES format.

Our SFT experiment was performed on a very small dataset (around 100 samples), risking overfitting.
Although the reasoning traces and proposed changes showed no such signs, in 9 out of 18 of the test
cases, the proposed edits failed to correspond to valid SMILES strings. (See figure 7.)



197

204

2025-06-10 03:28:41
2025-06-10 03:28:41
2025-06-10 03:28:41
2025-06-10 03:28:41
2025-06-10 03:29:13
2025-06-10 03:29:13
2025-06-10 03:29:13
2025-06-10 03:29:13
2025-06-10 03:29:13
2025-06-10 03:29:46
2025-06-10 03:29:46
2025-06-10 03:29:46
2025-06-10 03:29:46
2025-06-10 03:29:46
2025-06-10 03:29:46
2025-06-10 03:29:46
2025-06-10 03:29:46
2025-06-10 03:29:46

Sample 17:

Target SMILES: Fclcc(-c2cn(C)c(=0)c3cnccec23)cc(0C)c1CNICCCCCL
Predicted SMILES:

Valid: False, Exact Match: False, Similarity: 0.000

Sample 0:

Target SMILES: COclccc(ccl0C)C(=0)Nc2ccc(C(F)(F)F)cc2
Predicted SMILES: Based

Valid: False, Exact Match: False, Similarity: 0.000

Sample 12:

Target SMILES: 0=C(0)clccc2c(c1C(C)(C)C)clnHlc2
Predicted SMILES: Cclccn(0)c(=S)cl

Valid: True, Exact Match: False, Similarity: 0.111

SMILES PREDICTION METRICS:
Exact Match Rate: 0.000 (0/18)

2025-06-10 03:29:46 Validity Rate: 0.500 (9/18)

Figure 6: examples of failed evals

6 Discussion

As seen in the comparison data, initial SFT runs produced unstable results, wherein the model
sometimes generated invalid SMILES strings. This may suggest that one of our core assumptions-
that the base model has already been pre-trained to understand chemical knowledge and notation-
may be mistaken. However, the model also demonstrated desirable behavior, basing its proposed
edits on multiple tool calls to our verifier to verify its hypotheses. While the results of SFT are limited
by the scarcity of usable data, the method demonstrates its potential.

The lack of further data is due to an implementation error in the Gemini-2.5 tool calls during SFT data
generation, which led to malformed responses. This was only discovered less than a few hours before
the deadline, not enough time to make corrections. Shortcomings in training results demonstrate
the need for datasets at least an order of magnitude larger, and also suggest the necessity of further
pre-training the model on SMILES strings and biochemical corpus to ensure robust chemistry
knowledge.

7 Conclusion

Due to the lack of GRPO results, we cannot argue conclusively in favor or against our overall
methodology. Our work reveals there are significant challenges in adapting an LLM to the task
of protein-ligand binding optimization, due to the lack of pre-existing training environments and
pre-processed data. Our preliminary results demonstrate the potential of custom-built pipelines
to serve as fast and stable reward functions, as well as the potential of LLMs integrating verifier
pipelines during chemical generation. Future work should be directed at removing the obstacles to
LLM methods in drug discovery, such as constructing larger, higher-quality datasets and benchmarks,
especially the further development of fast and reliable binding affinity prediction models.

8 Team Contributions

* Ruosong Gao Verifier, milestone, poster and final report
* Sonnet Xu SFT, final report
* Markus Zhang Verifier, milestone and proposal

Caleb Choe Chain of Thought (CoT) Data Generation

Changes from Proposal The overall framework stayed constant since then. During implementation,
we substantially re-worked the verifier pipeline.



References

Minkyung Baek, Frank DiMaio, Ivan Anishchenko, Justas Dauparas, Sergey Ovchinnikov, Gyu Rie
Lee, Jue Wang, Qian Cong, Lisa N. Kinch, R. Dustin Schaeffer, Claudia Milldn, Hahnbeom Park,
Carson Adams, Caleb R. Glassman, Andy DeGiovanni, Jose H. Pereira, Andria V. Rodrigues,
Alberdina A. van Dijk, Ana C. Ebrecht, Diederik J. Opperman, Theo Sagmeister, Christoph
Buhlheller, Tea Pavkov-Keller, Manoj K. Rathinaswamy, Udit Dalwadi, Calvin K. Yip, John E.
Burke, K. Christopher Garcia, Nick V. Grishin, Paul D. Adams, Randy J. Read, and David
Baker. 2021. Accurate prediction of protein structures and interactions using a three-track neural
network. Science 373, 6557 (2021), 871-876. https://doi.org/10.1126/science.abj8754
arXiv:https://www.science.org/doi/pdf/10.1126/science.abj8754

Martin Buttenschoen, Garrett M. Morris, and Charlotte M. Deane. 2024. PoseBusters: Al-based
docking methods fail to generate physically valid poses or generalise to novel sequences. Chemical
Science 15,9 (2024), 3130-3139. https://doi.org/10.1039/d3sc04185a

Chiranjib Chakraborty, Manojit Bhattacharya, Soumen Pal, Srijan Chatterjee, Arpita Das, and
Sang-Soo Lee. 2025. Al-enabled language models (LMs) to large language models (LLMs) and
multimodal large language models (MLLMs) in drug discovery and development. Journal of
Advanced Research (2025). https://doi.org/10.1016/j.jare.2025.02.011

Gabriele Corso, Hannes Stirk, Bowen Jing, Regina Barzilay, and Tommi Jaakkola. 2023. DiffDock:
Diffusion Steps, Twists, and Turns for Molecular Docking.  arXiv:2210.01776 [g-bio.BM]
https://arxiv.org/abs/2210.01776

DeepSeek DeepSeek. 2025. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Rein-
forcement Learning. arXiv preprint arXiv:2501.12948 (2025).

Thomas Hayes, Roshan Rao, Halil Akin, Nicholas J. Sofroniew, Deniz Oktay, Zeming Lin,
Robert Verkuil, Vincent Q. Tran, Jonathan Deaton, Marius Wiggert, Rohil Badkundri, Irhum
Shafkat, Jun Gong, Alexander Derry, Raul S. Molina, Neil Thomas, Yousuf Khan, Chetan
Mishra, Carolyn Kim, Liam J. Bartie, Matthew Nemeth, Patrick D. Hsu, Tom Sercu, Salva-
tore Candido, and Alexander Rives. 2024. Simulating 500 million years of evolution with
a language model. bioRxiv (2024). https://doi.org/10.1101/2024.07.01.600583
arXiv:https://www.biorxiv.org/content/early/2024/07/02/2024.07.01.600583.full.pdf

Michael Hla. 2025. Pro-1: A Reasoning Model Trained Using GRPO Towards a Physics-Based
Reward Function for Protein Stability. https://michaelhla.com/blog/prol.html Accessed:
2025-05-25.

Andrew T. McNutt, Paul Francoeur, Rishal Aggarwal, Tomohide Masuda, Rocco Meli, Matthew
Ragoza, Jocelyn Sunseri, and David Ryan Koes. 2021. GNINA 1.0: molecular docking with
deep learning. Journal of Cheminformatics 13, 1 (2021), 43. https://doi.org/10.1186/
s13321-021-00522-2

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal
Policy Optimization Algorithms. arXiv preprint arXiv:1707.06347 (2017).

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. 2024. DeepSeekMath: Pushing the Limits
of Mathematical Reasoning in Open Language Models. arXiv preprint arXiv:2402.03300 (2024).
https://arxiv.org/abs/2402.03300

Renxiao Wang, Xueliang Fang, Yipin Lu, and Shaomeng Wang. 2004. The PDBbind Database:
Collection of Binding Affinities for ProteinLigand Complexes with Known Three-Dimensional
Structures. Journal of Medicinal Chemistry 47, 12 (2004), 2977-2980. https://doi.org/10.
1021/3jm0305801 PMID: 15163179.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le
Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men,

10


https://doi.org/10.1126/science.abj8754
https://doi.org/10.1039/d3sc04185a
https://doi.org/10.1016/j.jare.2025.02.011
https://arxiv.org/abs/2210.01776
https://doi.org/10.1101/2024.07.01.600583
https://michaelhla.com/blog/pro1.html
https://doi.org/10.1186/s13321-021-00522-2
https://doi.org/10.1186/s13321-021-00522-2
https://arxiv.org/abs/2402.03300
https://doi.org/10.1021/jm030580l
https://doi.org/10.1021/jm030580l

Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren,
Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger Zhang,
Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, and Zhipeng Zhou. 2025. Qwen3
Technical Report. Technical Report 2505.09388. arXiv. https://arxiv.org/abs/2505.09388

11


https://arxiv.org/abs/2505.09388

A Data Processing

Data was parsed from a JSONL file, where each entry represents a protein-ligand interaction scenario.
For each entry, we extracted the following fields:

* protein_id: Unique identifier for the protein.

* input_ligand_smiles: The initial SMILES string of the ligand.

* input_kd: The dissociation constant of the initial protein-ligand complex.

* 11m_reasoning: The reasoning provided by an LLM for ligand optimization.
* target_smiles: The optimized SMILES string for the ligand.

Entries were filtered to ensure the presence of all critical fields and the chemical validity of both
input_ligand_smiles and target_smiles using RDKit’s Chem.MolFromSmiles function. For
each valid entry, we constructed a conversational turn to serve as input and target for the LLM. The
input text (input_text) was formatted as:

<|im_start|>user

Protein ID: {protein_id}

Input Ligand SMILES: {input_ligand_smiles}
Input Kd: {input_kd}

Analyze this protein-ligand interaction and propose an optimized SMILES structure.
First provide your reasoning, then give the final SMILES.

<|im_end|>

<|im_start|>assistant

The corresponding target text (target_text) was structured as:

{11m_reasoning}

Proposed SMILES: {target_smiles}
<|im_end|>

The SMILESTrainingExample dataclass was used to encapsulate these textual components and

to store the character-level start and end indices (smiles_start_idx, smiles_end_idx) of the
target_smiles within the target_text. These indices are crucial for the custom loss function.

12



	Introduction
	Related Work
	Methods
	Data Generation
	Tokenization and Custom Data Collator
	SMILES-Focused Loss Function
	Building a High-performing Verifier

	Experimental Setup
	Task Description
	Dataset Description
	Model and Training Configuration
	Baselines and Metric Choices


	Results
	Quantitative Analysis
	Qualitative Analysis

	Discussion
	Conclusion
	Team Contributions
	Data Processing

